

Lucerne Variety Trial – Assess optimum plant stress levels for seed production

SEED PRODUCTION REPORT - YEAR 2

Lucerne Australia is pleased to release this report summary for the Lucerne Variety Trial - Assess optimum plant stress levels for seed production.

Funding was received from AgriFutures Australia through the Pasture Seeds Program funded by a \$15 per tonne levy on the sale of certified lucerne seed from Australian growers which is matched by Commonwealth Government funding.

The trial work is being conducted by Kalyx Australia on Simon Allen's Warrawee Park property south of Keith, SA.

Seed varieties have been supplied by:

Alforex Seeds, Barenbrug (formerly Heritage Seeds), Naracoorte Seeds, Pasture Genetics, PGG Wrightson Seeds, Seed Force, S&W Seed Co, Upper Murray Seeds.

This trial commenced with seeding on 22nd June 2018.

The seed harvest was carried out on 17th March 2020.

Disclaimer

While all due care has been taken in compiling the information within this summary report, Lucerne Australia Inc or the researchers involved take no responsibility for any persons relying on the information and disclaims all liability for any errors or omission in the publication.

SUMMARY

The trial was conducted at Keith, South Australia on a sandy loam soil to evaluate and compare the seed yield of 29 current and pre-commercial Lucerne (*Medicago sativa*) varieties under modified irrigation management strategies.

The trial was replicated over three flood irrigation bays to simulate a standard, moderate and high stress watering strategy. The standard watering strategy represented farmer practice. Details of the irrigation schedules used this season can be found in the Appendix.

Through the implementation of commercial soil probes and visual crop assessments, the crop condition and soil moisture were monitored throughout the duration of this trial, to assist and guide irrigation management regimes.

The varieties evaluated in this trial include SFR27-032, SFR27-033, SF 914QL, SFR27-030, L71, L92, GTL60, Magna 901, Magna 868, Silverland (D5), Silverosa GT (D7), Silverado (D9), Silversky (D11), Siriver MK II, Titan 9, AR245, AR323, SW18NPK90, SW18NPK91, SW18NPK92, SARDI 10 Series II, Heritage 10, Heritage ST, SARDI 7 Series II, SC01, SC02, SC03, SC04 and SC05. Siriver and Aurora were included in this trial as benchmark varieties.

Crop seed yield was determined at commercial harvest, both as a harvest sample and cleaned seed weight (t/ha)

Data for this year's yields were collected from a second year Lucerne stand with yield averages ranging from 0.448 - 0.817 t/ha (Table 1).

Table 1: Lucerne clean seed yield (t/ha)

Rating Date	17-March-2020				
Rating Type	YIELD				
Rating Unit	t/ha				
Description	Standard Water	Moderate Stress Water	High Stress Water		
Crop Stage Majority		99			
Crop Stage Minimum/Maximum		99 99			
Plant-Eval Interval	655 DP-1				
Trt Treatment					
No. Name					
1SFR27-032	0.582b-e	0.651b-h	0.736a-e		
2SFR27-033	0.561b-g	0.691bc	0.736a-e		
3SF 914QL	0.559b-h	0.657b-g	0.745a-d		
4SFR27-030	0.497e-j	0.583h-m	0.616ghi		
5L71	0.459hij	0.549lm	0.647e-i		
6L92	0.571b-f	0.615d-l	0.688d-h		
7GTL60	0.538c-j	0.692bc	0.728a-e		
8Magna 901	0.475f-j	0.560j-m	0.624f-i		
9Magna 868	0.448j	0.453n	0.593i		
10Silverland (D 5)	0.620a-d	0.683bcd	0.746a-d		
11Silverosa GT (D 7)	0.521d-j	0.615d-l	0.677d-i		
12Silverado (D9)	0.552b-i	0.631c-j	0.747a-d		
13Silversky (D11)	0.549b-i	0.632c-j	0.715b-e		
14Siriver MK II	0.526d-j	0.554klm	0.599hi		
15Titan 9	0.558b-h	0.601e-m	0.677d-i		
16AR245	0.585b-e	0.580h-m	0.698c-g		
17AR323	0.471g-j	0.584h-m	0.648e-i		
18SW18NPK90	0.597a-e	0.684bcd	0.809a		
19SW18NPK91	0.630abc	0.766a	0.817a		
20SW18NPK92	0.648ab	0.636c-i	0.778abc		
21SARDI 10 Series II	0.562b-g	0.666b-f	0.698c-g		
22Heritage 10	0.693a	0.719ab	0.813a		
23Heritage ST	0.581b-e	0.568i-m	0.666d-i		
24SARDI 7 Series II	0.631abc	0.626c-k	0.804ab		
25SC01	0.618a-d	0.671b-e	0.662d-i		
26SC02	0.564b-g	0.593g-m	0.665d-i		
27SC03	0.580b-e	0.597f-m	0.713c-f		
28SC04	0.508e-j	0.534m	0.679d-i		
29SC05	0.516e-j	0.636c-i	0.786abc		
30Siriver	0.456ij	0.570i-m	0.620ghi		
31Aurora	0.562b-g	0.584h-m	0.652e-i		
LSD P=.05	0.1002	0.0721	0.0900		
Standard Deviation	0.0713	0.0513	0.0640		
CV	12.84	8.29	9.12		
Levene's F	1.694	0.816	0.979		
Levene's Prob(F)	0.029*	0.731	0.508		
Skewness	0.1607	-0.1734	0.0714		
Kurtosis	-0.1045	0.7166	-0.5979		
	0.20.0	5.7.255	0.007.5		
Replicate F	1.110	4.345	6.222		
Replicate Prob(F)	0.3491	0.0066	0.0007		
Treatment F	2.775	5.977	4.124		
Treatment Prob(F)	0.0001	0.0001	0.0001		
Means followed by same letter do no					

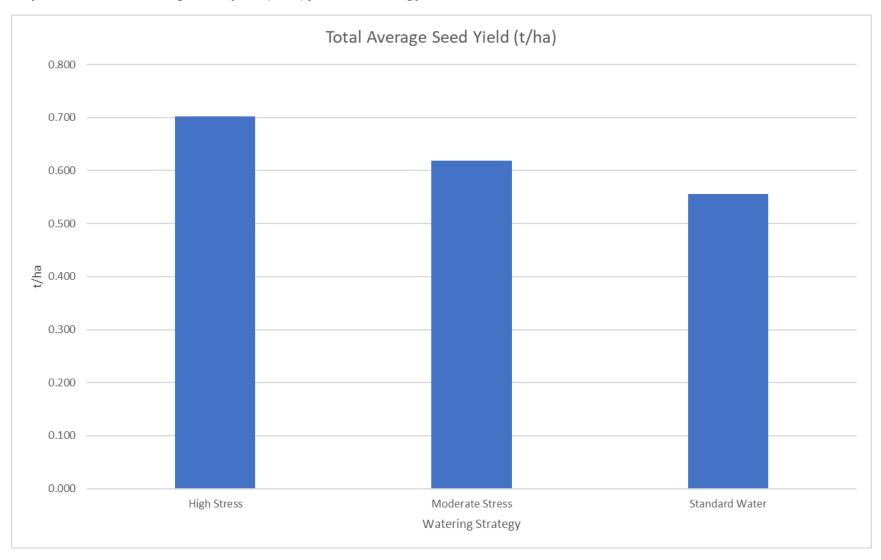
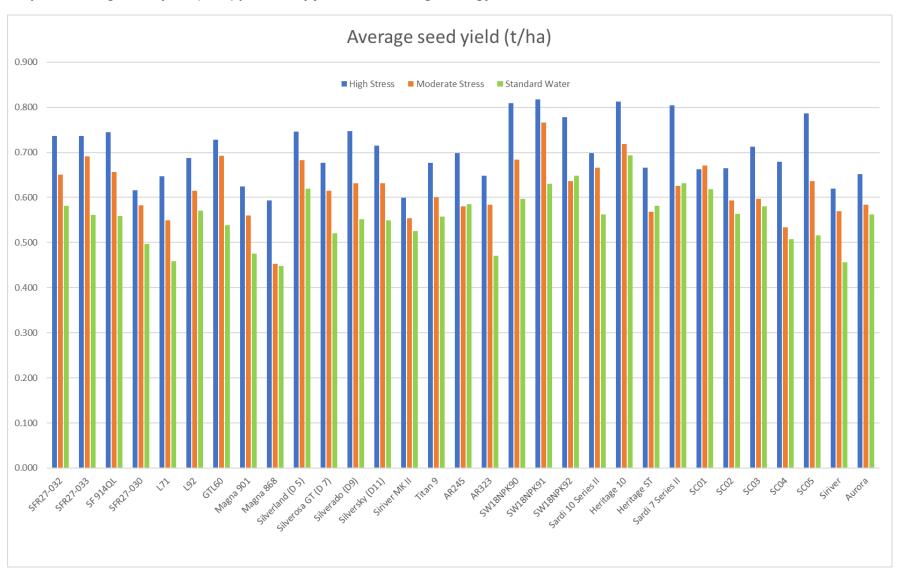

Means followed by same letter do not significantly differ (P=.05, LSD).

Table 2: Lucerne clean seed yield percentage relative to the standard watering


Assessment Date		17-March-2020				
Assessment Type			YIELD			
Assessment Unit		% Relative to Standard Water				
Description		Standard Water	Moderate Stress Water	High Stress Water		
Crop Stage Majority			99	1		
Crop Stage Minimum	/Maximum	99 99				
Plant-Eval Interval			655 DP-1			
Trt Treatment						
No. Name						
1 SFR27-032		100	112	126		
2 SFR27-033		100	123	131		
3 SF 914QL		100	118	133		
4 SFR27-030		100	117	124		
5 L71		100	120	141		
6 L92		100	108	120		
7 GTL60		100	129	135		
8 Magna 901		100	118	131		
9 Magna 868		100	101	132		
10 Silverland (D 5)		100	110	120		
11 Silverosa GT (D	7)	100	118	130		
12 Silverado (D9)		100	114	135		
13 Silversky (D11)		100	115	130		
14 Siriver MK II		100	105	114		
15 Titan 9		100	108	121		
16 AR245		100	99	119		
17 AR323		100	124	138		
18 SW18NPK90		100	115	136		
19 SW18NPK91		100	122	130		
20 SW18NPK92		100	98	120		
21 SARDI 10 Serie	s II	100	119	124		
22 Heritage 10		100	104	117		
23 Heritage ST		100	98	115		
24 SARDI 7 Series	II	100	99	127		
25 SC01		100	109	107		
26 SC02		100	105	118		
27 SC03		100	103	123		
28 SC04		100	105	134		
29 SC05		100	123	152		
30 Siriver		100	125	136		
31 Aurora		100	104	116		

^{*}This table displays the yield percentage of each Lucerne variety relative the standard watering strategy but does not compare varieties. i.e. Siriver yielded 25% more in the moderate water stress bay when compared to the standard watering strategy. The table indicates how the individual varieties responded to water stress; however, it is important to note that the top performing varieties in the trial performed well regardless of watering strategy.

Graph 1 – The total average seed yield (t/ha) for each strategy

Graph 2 -Average seed yield (t/ha) per variety for each watering strategy

DISCUSSION

Delaying irrigation timings in a controlled manner increased clean seed yield in this second-year lucerne stand (Graph 1). Under the conditions of the trial, the moderate stress strategy increased yields in comparison to the standard watering strategy by 11.5%. The high stress strategy increased yields by 26.7% and 13.6% compared to the standard and moderate stress watering strategies, respectively.

Within individual varieties, the responses to the moderate and high stress strategies on yield were generally positive relative to the standard strategy (Table 2 and Graph 2).

Standard watering

Under the standard watering strategy, clean seed yield ranged between 0.693 and 0.448 t/ha with a median yield of 0.561 t/ha. The highest yielding varieties under this treatment were Heritage 10, SW18NPK92, SARDI 7 Series II, SW18NPK91, Silverland (D5), SC01 and SW18NPK90 (Table 1).

Heritage 10 provided 23.3% significantly higher yield compared to the benchmark variety Aurora at 0.562 t/ha. Aurora recorded significantly higher yields than L71, Siriver and Magna 868 by up to 25.4%. All other varieties recorded equal yields to Aurora.

SFR27-030, L71, GTL60, Magna 901, Magna 868, Silverosa GT (D 7), Silverado (D9), Silversky (D11), Siriver MK II, AR323, SCO4 and SC05 yielded statistically similar clean seed weights to Siriver at 0.456 t/ha.

Moderate stress watering

Under the moderate stress watering strategy, clean seed yield ranged between 0.766 and 0.453 t/ha (Table 1) with a median yield of 0.615 t/ha.

The highest yielding varieties under this treatment were SW18NPK91 and Heritage 10 with clean seed weights of 0.766 t/ha and 0.719 t/ha. SW18NPK91 and Heritage 10 provided up to 34.4% significantly greater yield in comparison to benchmark varieties Siriver and Aurora which had statistically similar yields of 0.570 and 0.584 t/ha, respectively.

SFR27-030, L71, L92, Magna 901, Silverosa GT (D 7), Silverado (D9), Silversky (D11), Siriver MK II, Titan 9, AR245, AR323, SW18NPK92, Heritage ST, SARDI 7 Series II, SC02, SC03, SC04 and SC05 had significantly similar yields when compared to both Siriver and Aurora.

SFR27-032 also produced similar yield to Aurora but provided 11.5% significantly higher yield than Siriver.

High stress watering

Under the high stress watering strategy, clean seed yield ranged between 0.817 and 0.593 t/ha (Table 1) with a median yield of 0.698 t/ha.

The highest performing varieties under this treatment were SW18NPK91, Heritage 10, SW18NPK90, SARDI 7 Series II, SC05, SW18NPK92, Silverado (D9), Silverland (D5), SF 914QL, SFR27-033, SFR27-032 and GTL60.

These varieties had significantly similar yields ranging from 0.817 t/ha to 0.728 t/ha and produced yield increases of up to 31.7% when compared to Siriver (0.620 t/ha) and up to a 25.3% increase when compared to Aurora (0.652 t/ha).

SFR27-030, L71, L92, Magna 901, Magna 868, Silverosa GT (D7), Siriver MK II, Titan 9, AR245, AR323, SARDI 10 Series II, Heritage ST, SC01, SC02 and SC04 yielded equally to both the benchmark varieties Siriver and Aurora.

SFR27-032, SFR27-033, GTL60, Silversky (D11) and SC03 also yielded equally to Aurora, however these varieties yielded significantly more than Siriver by 15 – 18%.

CONCLUSIONS

The data reported from this trial to date suggests a strong trend for seed yield to increase under controlled water deprivation. It is critical to note that 'stress' under the conditions of this trial is not associated with the need to have the plant dry back severely.

By delaying irrigation timing in a strategic manner there is strong evidence that seed yield can be increased across any variety. The degree of irrigation delay and the specific timing is likely to vary between soil types and irrigation method, but this data supports anecdotal evidence Only subsequent seasons will highlight if any differences exist in performance and response to irrigation deprivation between varieties.

<u>APPENDIX</u>

INTERPRETATION OF STATISTICAL INFORMATION

- 1. The results of replicated trials are presented as the average (mean) for each of the replicates within a treatment/variety.
- 2. Coefficient of variation (CV%) gives an indication of the precision of the experiment; experiments with a high CV are less reliable.
- 3. The 5% least significant difference (**LSD** P=0.05), seen at the bottom of data tables gives an indication of the treatment difference that could occur by chance. The size of the LSD can be used to compare treatment results and values must differ by more than this value for the difference to be statistically significant. NS (not significant) indicates that there is no difference between the treatments.

i.e.

In a hypothetical example of wheat yield, statistically significant differences were found between varieties for grain yield (Table 1). The LSD for grain yield of 0.40 means there must be more than 0.40 t/ha difference between yields before that variety's performance is significantly different to another. In this example Trojan is significantly different to all other varieties as it is the only variety followed by a superscript (a). Scout, Mace and Cosmick are not significantly different from each other and are all followed by a superscript (b) as they all yielded within 0.4 t/ha of each other.

Table 1. Wheat variety grain yield (example only)

Variety	Yield (t/ha)	
Arrow	3.5c	
Cosmick	3.98b	
Mace	3.75bc	
Scout	4.05b	
Trojan	4.77a	
LSD (P = 0.05)	0.40	

	Lucerne Australia Variety Trial Season 2019/20				
	Management Calendar of Events				
Date	Activity	Application Rate			
11/04/2019	Snail bait	1			
5/06/2019	Pasture King fertilizer N-0 P-15.7 K-0 S-4.6 Ca14	80	kg/ha		
20/06/2019	Grazed				
26/06/2019	Winter clean				
14/08/2019	Snail bait on border and banks	Snail bait on border and banks			
2/12/2019	Grazed				
4/12/2019	Single super application	100	kg/ha		
4/12/2019	Snail bait				
4/12/2019	Pre emergent spray				
4/12/2019	1st Irrigation for seed - all bays	1.5	ML/ha		
10/12/2019	Trace element - foliar application				
22/12/2019	2nd Irrigation for seed - all bays	1.5	ML/ha		
24/12/2019	Insecticide				
8/01/2020	Insecticide				
12/01/2020	3rd Irrigation for seed- Standard strategy bay	1.5	ML/ha		
14/01/2020	3rd Irrigation for seed- Moderate Stress strategy bay	1.5	ML/ha		
21/01/2020	3rd Irrigation for seed High Stress strategy bay	1.5	ML/ha		
3/02/2020	Insecticide				
18/02/2020	4th Irrigation for seed- Standard strategy bay	1.5	ML/ha		
8/03/2020	Defoliation				
17/03/2020	Harvest				
26/03/2020	Irrigated for feed - all bays	1.5	ML/ha		
1/05/2020	Grazed				
12/06/2020	Grazed				
17/06/2020	Pasture King fertilizer N-0 P-15.7 K-0 S-4.6 Ca14	70	kg/ha		
21/06/2020	Winter Clean				

Soil moisture levels at the trial site can be accessed through the following link:

https://www.outpostcentral.com/remote/(S(tjaii20hgw3mwdr5yg4dy0qs))/WildeyeEDefault.aspx?uguid=d4b7a7bb-e8f6-e811-80c8-bc764e18087e